
RENDERING IN VULKAN
Melvin Rother, melvin.rother@pm.me

INTRODUCTION

 This presentation serves as a sort of archive of what I learned about the Vulkan rendering API in Block B.

 You can find the project on my GitHub

 This is a sequel to my self-study from Block A: Rendering a Triangle in Vulkan

 As I can only work on this on Fridays, I only aim to learn about Vertex Buffers

 You can find the tutorial I use as a reference here: vulkan-tutorial.com

https://github.com/leymb/vRenderer
https://edubuas.sharepoint.com/:p:/t/2022-23AFGA3.P1/ETtQ5Eqqf1NDjn9DoPJv8_4B35MxDQZG8wKwylfCv9tKXw?e=2pfztU
https://vulkan-tutorial.com/

STEP 0: IN-FLIGHT FRAME SYNCHRONIZATION
 During my self-study in Block A, I purely focused on rendering a Triangle and ignored everything else (such as Buffers etc.) ->

only very basic building blocks are implemented

 Because of that, the program always has to wait until that one frame has finished before a new one can be drawn

 Since that is very ineffective, I implemented the ability to have several frames in flight -> which means one frame can be rendered
while still waiting for the first one to finish

 This can be done the same way as only using one frame

 The only requirement is that there need to be individual synchronisation objects (Semaphores & Fences) and Command buffers per frame

 Thus, I changed my implementation to use vectors of synchronisation objects and Command Buffers that can then easily be indexed into per
frame

STEP 1: BUFFER INPUT DESCRIPTIONS
 To get data from the CPU to the GPU, there are a few steps that we need to take:

 Create a CPU visible buffer

 Copy data (in our case, vertex data) into it using memcpy

 Use a staging buffer to copy the data to high-performance memory

 To create a CPU visible buffer, we first need to tell Vulkan how to interpret the data after it has been uploaded to the GPU. This can be done
using Input Descriptions:
 A Binding Description informs Vulkan about each vertex input binding, the stride between the elements in the buffer and the VertexInputRate

 Binding descriptions are created using the VkVertexInputBindingDescription struct
 Attribute Descriptions tell Vulkan about the vertex input attributes, including which shader input the data should be bound to, the binding number the

attribute retrieves data from and the format and size of the attribute data
 Attribute Descriptions are created using the VkVertexInputAttributeDescription struct

 Then, the graphics pipeline needs to be told to receive the data that we want to buffer
 This can be done by modifying the VkPipelineVertexInputStateCreateInfo struct that we have to create when creating the Graphics Pipeline
 To do so, the binding & attribute description count members have to be set, the pVertexBindingDescriptions member has to reference the binding

description struct, and the pVertexAttributeDescriptions member has to be fed the raw data of the attribute descriptions

 ! Note that as we have not yet bound a vertex buffer, the validation layers will report a validation error !

STEP 1: BUFFER INPUT DESCRIPTIONS
 Creating the binding descriptions works the same as everything in Vulkan

 Create a VkVertexInputBindingDescription struct and assign to it the binding number, the size of an individual element of what is being bound and the input rate

 The input rate can either be VK_VERTEX_INPUT_RATE_VERTEX (meaning it moves to the following data entry after each vertex) or
VK_VERTEX_INPUT_RATE_INSTANCE (meaning it moves to the next data entry after each instance)

 Creating the attribute descriptions follows the same pattern

 Create a VkVertexInputAttributeDescription struct and assign its members.

 The location member references the location directive set in the vertex shader (e.g. where can the data be accessed from in the shader)

 The format member describes the type of data sent to the GPU (e.g. a glm::vec would be VK_FORMATR32G32B32_SFLOAT because it contains three floats
of a size of 32 bits) -> if there are more components defined in the format than are in the shader data type, the additional components will be discarded

 To apply the binding and attribute descriptions, they need to be passed to the graphics pipeline

 In the VkPipelineVertexInputStateCreateInfo struct used to generate the graphics pipeline, add both the binding and attribute descriptions to the corresponding
members

 The Graphics Pipeline is then prepared to receive data from the buffer

STEP 2: VERTEX BUFFER CREATION
 In Vulkan, the concept of a buffer describes regions of memory that can be used to store any data, which the graphics card

can then read

 Buffers do not allocate memory for themselves (unlike other objects in Vulkan) -> Vulkan gives the developer complete
control of the memory management of Buffers

 The process of creating a buffer is the same as always: make a VkBufferCreateInfo and fill in the members

 The size member describes the size of the data to be buffered in bytes

 The usage member describes how the buffer is used. Several purposes can be defined using the bitwise or operator

 The sharingMode member fulfils the same function as the member of the same name in the VkSwapChainCreateInfoKHR. Buffers can
be owned by one queue family or several at the same time, and this member describes how this will be handled

 Then the buffer can be created with a call to vkCreateBuffer

STEP 3: ASSIGNING MEMORY TO THE VERTEX BUFFER
 Before memory can be assigned to a buffer, the memory requirements need to be queried using

VkGetBufferMemoryRequirements that stores the returned information into a VkMemoryRequirements struct

 Then, the right type of memory to be allocated from can be queried from the types of memory the graphics card offers

 Afterwards, memory can be allocated by filling a VkMemoryAllocateInfo struct with the the type and size of memory to be
allocated and then calling vkAllocateMemory

 The memory can then be bound to the buffer using vkBindBufferMemory

 Then the buffer can be filled with the desired data. This can be done by calling vkMapMemory, using memcpy to copy the
desired data to the location the resulting pointer points to and calling vkUnmapMemory.

STEP 4: BINDING THE VERTEX BUFFER
 Binding a Buffer is then straightforward. When recording the command buffer, follow these steps:

1. Add all of the (Vertex) Buffers into an array of VkBuffers

2. Define all of the Offsets in an array of VkDeviceSize objects

3. Call vkCmdBindVertexBuffers using the array of buffers and array of offsets

4. If your buffer is a vertex buffer, also modify the vkCmdDraw to take in the correct size of the vertices buffered

5. …

6. Profit!

SUMMARY
The Steps to creating and using a buffer in Vulkan follow the general structure of creating anything else in the API:

1. Create the Vertex Binding and Attribute descriptions. These tell Vulkan how to interpret the data uploaded to the GPU

2. Create the Vertex Buffer (this follows the same pattern as any other object in Vulkan: make a BufferCreateInfo struct and feed it to the
vkCreateBuffer function)

3. Assign memory to it by

1. Allocating memory for it

2. Binding said memory

3. Mapping the memory, copying data into the buffer using memcpy and then unmapping it

4. Finally, bind the buffer to the Command Buffer using vkCmdBindVertexBuffers

THANK YOU

SOMEONE@EXAMPLE.COM

	Rendering in Vulkan
	Introduction
	Step 0: In-Flight frame Synchronization
	Step 1: Buffer Input Descriptions
	Step 1: Buffer Input Descriptions
	Step 2: Vertex Buffer Creation
	Step 3: Assigning Memory to the Vertex buffer
	Step 4: Binding the Vertex buffer
	Summary
	Thank You

